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Building a Type-2 Fuzzy Regression Model based on Creditability
Theory and its application on Arbitrage Pricing Theory

Yichen g Wei» Non-member,
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Type-2 (T2) fuzzy set was introduced to model vagueness associated with primary membership function of type-1(T1)
fuzzy set. While it was invented to handle more fuzziness of information, there are only a few algorithms(models) to
deal with data in the form of T2 fuzzy variables given their three-dimensional features. To solve the problem, we define
the expected value of a T2 fuzzy variable using creditability theory in this paper. And by substituting the expected value
for the original T2 fuzzy set , the vertical uncertainties of data are transferred to horizontal ones without much dis-
tortion of information. Calculations between three dimensional T2 fuzzy sets are thus transferred to two-dimensional
range calculations between T1 fuzzy sets. Based on that principle, we also build a T2 fuzzy expected regression model

and apply it on the arbitrage pricing theory.
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1. Introduction

Information in real life may have linguistically vagueness.
Traditional set theory that uses characteristic function to de-
fine whether an element belongs to a certain set (event) does-
n’t concern such uncertainty. Fuzzy set (T1 fuzzy set) was
first introduced for the problem in 1965 by Lofti A Zadeh [1].
After that, Watada and Tanaka expanded a fuzzy quantifica-
tion method in 1987 [2]. From then on, it is able to describe
an artificial membership function with its output called pri-
mary membership grades, to which extend one element be-
longs to a certain set (event).

On the background that the membership function of a T1
fuzzy set may also have uncertainty associated with it, Lot-
fi A. Zadeh invented Type-2 fuzzy sets(T2 fuzzy variable) in
1975 [3]. A T2 fuzzy set lets us incorporate fuzziness about
the membership function into fuzzy set theory and is a way to
address the above concern of T1 fuzzy sets head-on. Howev-
er, T2 fuzzy set didn’t become popular immediately given its
complexity of calculation. T2 fuzzy sets are difficult to un-
derstand because: (1) T2 fuzzy sets are more theoretical, thus
less of empirical applications. (2) using T2 fuzzy sets is com-
putationally more complicated than using T1 fuzzy sets. The
conception was only investigated by a few researchers; for
example, Mizumoto and Tanaka [4] discussed what kinds of
algebraic structures the grades of T2 fuzzy sets form under
join, meet and negation; Dubois and Prade [5] investigated
the operations in a fuzzy-valued logic. It is not until recent
days that T2 fuzzy sets have been applied successfully to T2
fuzzy logic systems to handle linguistic and numerical uncer-
tainties [6][7][8][9]1[10].

On the other hand, various fuzzy regression models were
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introduced to cope with qualitative data coming from fuzzy
environments where human (expert) subjective estimates are
used. The first fuzzy linear regression model was proposed
by Tanaka[11]. Tanaka[12], Tanaka and Watada[13], Wata-
da and Tanaka[14] presented possibilistic regression based
on the concept of possibility measure. Chang[15] discussed
a fuzzy least-squares regression, by using weighted fuzzy-
arithmetic and the least-squares fitting criterion. Watada[16]
developed models of fuzzy time-series by exploiting the con-
cept of intersection of fuzzy numbers.

For the reason mentioned above, most of the exist-
ing studies on fuzzy logic system( called "FLC’)have fo-
cused on data consisting of numeric values or T1 fuzzy
variables without T2 hybrid uncertainty into considera-
tion. While in practical situations, there exists a grow-
ing need to cope with data in presence of more compli-
cated uncertainty including fields such as industrial con-
trol[17][18][19][20], pattern recognition[21][22][23], deci-
sion making technology[24][25], healthcare[26][27], finan-
cial engineering[28][29][30] and communication system-
s[31][32][33]. In these applications, T2 fuzzy set either
models complex uncertainties which T1 fuzzy set cannot do
or constructs a robust control/prediction system that outper-
formed the traditional T1 FLCs. As the type-2 fuzzy set
membership functions are themselves fuzzy and contain a
footprint of uncertainty, they can model and handle the lin-
guistic and numerical uncertainties associated with the input-
s and outputs of the FLC in changing and dynamic unstruc-
tured environments and hence they can handle the difficul-
ty associated with determining the exact membership func-
tions for the fuzzy sets. Therefore, FLCs that are based on
type-2 fuzzy sets will have the potential to produce a bet-
ter performance than type-1 FLCs when dealing with uncer-
tainties. For example, traditionally T1 Fuzzy PID controllers
have been used for speed control in marine/traction diesel en-
gines. However, there are many sources of uncertainty which
is essential facing the FLC for marine/traction diesel engines
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that cannot be modeled by T1F set in practice, such as uncer-
tainties in inputs to the FLC which translate to uncertainties
in the antecedents membership functions as sensors measure-
ments are affected by high noise levels from various sources
like electromagnetic and radio frequency interference, vibra-
tion induced triboelectric cable charges, etc; Uncertainties in
control outputs which translate to uncertainties in the output
membership functions of the FLC. Such uncertainties can re-
sult from change of the actuators characteristics due to wear
and tear or environmental changes such as in altitude which
have direct effect on combustion; Uncertainties in the engine
operation conditions which can be due to change of load,
change of fuel, etc. Such uncertainties can translate to uncer-
tainties in the antecedents and/or consequents membership
functions. All of these uncertainties translate into uncertain-
ties about fuzzy set membership functions, thus T2 fuzzy set
is more proper to model it.

Another example is in financial market. There are two
types of prices in financial markets. One is called transac-
tion price and the other is offered price. The former is always
continuous and objective based on real transactions, while
the latter is discrete and subjective based on quotations. The
price for Libor (London Inter-Bank Offered Rate)is an of-
fered price. The majority investment banks offered quotation-
s for borrowing/lending rate of money in inter-bank market
according to their estimation of the future trend of financial
markets. The market regulator collects all those quotations,
adds some weight for each bank, then calculates an average
result as the current Libor. The Libor contains all majori-
ty banks’ opinions of the market and will be the basis for
valuations of all other financial assets. Moreover, regulators
will judge the quotation performance of each bank by some
standards(called evaluation system) and give the evaluation
to each quoter from time to time. The evaluation will restrict
behaviors of quoters meanwhile as a standard to adjust their
weight percentage to final result. T here are only a few mod-
els applying offered prices as inputs to make estimations or
predictions because the price is hard to quantify for its two
layer uncertainties, which are the quotation range and regu-
lators evaluation. We use primary membership grade to de-
scribe how the quotation belonging to the to-dates price and
use secondary membership grade to model those effective-
ness on regulators evaluations.

However, with regard to the complexity of type-2 fuzzy
variables, there are only a few mathematical algorithms mod-
eling, learning T2 fuzzy inputs and predicting T2 fuzzy out-
puts. Recently, Wei and Watada developed T2F qualitative
regressions model[34][35][36]. However, the model only ap-
plies type-2 fuzzy variables as coefficients of system but in-
puts and outputs. Thank to Prof Liu[37][38], he created a no-
tion of credibility measure for fuzzy sets, which is a convex
combination of possibility measure and necessity measure.
By using it , we are able to make the calculation of fuzzy sets
much easier than before. We obtained the idea to build an
advanced T2 fuzzy regression algorithm.

The objective of this paper is to introduce a class of T2
fuzzy expected regression model based on creditability the-
ory to deal with T2 fuzzy inputs and outputs. We use cred-
itability theory introduced by Liu to define the expected value
of a T2 fuzzy variable. Given that there is few applications

for T2 fuzzy sets, we also apply the T2 fuzzy regression mod-
el to the arbitrage pricing theory and compare its prediction
result with T1 fuzzy regression model and traditional regres-
sion model. This paper will be a further work based on our
former research of type-2 fuzzy qualitative regression model.
The remainder of this paper is organized as follows. In
Section 2, we cover some preliminaries of creditability the-
ory and T2 fuzzy sets. Then we define the expected value
of T2 fuzzy variable in section 3. Section 4 formulates a T2
fuzzy expected regression model. In section 5, a heuristic al-
gorithm will be offered to solve the problem. Moreover, we
apply the new model to arbitrage pricing theory in section 7.
Finally, concluding remarks are presented in Section 8.

2. Preliminaries

2.1 Creditability Theory Recently, Liu has suc-
ceeded in establishing an axiomatic foundation for uncertain-
ty. He created a notion of credibility measure, which is a con-
vex combination of possibility measure and necessity mea-
sure. Given some universe I', let Pos be a possibility measure
defined on the power set P(I') of I'. Let R be the set of real
numbers. A function A : I' — ‘R is said to be a fuzzy variable
defined on I' . The possibility distribution p4 of A is defined
by ua(t) = Pos{A = t},t € R, which is the possibility of event
{A = t}. For fuzzy variable A with possibility distribution p4,
the possibility, necessity and credibility of event {A < r} are
given, as follows

Pos{A < r} = sup ua(2),
I<r

Nec{A < r} =1 —sup ua(?),

ot (1)
1
Cr{fA <r} = 3 1+ supua(t) — supyA(t)).
t<r t>r

From (1), we note that the credibility measure is an average
of the possibility and the necessity measure, i.e., Cr{-} =
(Pos{-} + Nec{-})/2, and it is a self-dual set function, i.e.,
Cr{A} = 1 — Cr{A¢} for any A in P(I'). The credibility theory
is first introduced by Liu.The motivation behind the introduc-
tion of the credibility measure is to develop a certain measure
which is a sound aggregate of the two extreme cases such as
the possibility (expressing a level of overlap and being highly
optimistic in this sense) and necessity (articulating a degree
of inclusion and being pessimistic in its nature). Moreover,
we are able to calculate the expected value of a fuzzy set from
then on. For fuzzy variables, there are many ways to define an
expected value operator. See, for example,Dubois and Prade
, Heilpern, Campos and Gonzalez, Gonzalez and Yager. The
most general definition of expected value operator of fuzzy
variable was given by Liu. Based on credibility measure, the
expected value of a fuzzy variable is presented as follows.

Let A be a T1 fuzzy variable. The expected value of A is
defined as

E[A] = f"" Cr{A > r}dr — fO CriA<ridr------ 2)
0

provided that the two integrals are finite.
Moreover, assume that A = (a,c/,¢")r is a triangular fuzzy
variable whose possibility distribution is
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_ Al
X—=C I

—, ¢ <x<a
ar— Cx 3)
= C — X = teetecissaneieaen
#a(x) , as<x<c (
c'—a ]
0, otherwise.

Making use of (2), we determine the expected value of A to
be

! r
E[A] = MTLH_C. ............................ 4)

2.2 Type-2 Fuzzy Set Developed from T1 fuzzy set-

s, T2 fuzzy sets express the non-numeric membership with
imprecision and uncertainty. A T2 fuzzy set denoted by A,
is characterized by a T2 membership function uz(x, pa(x)),
where x € X and ua(x) € J, C [0, 1]. The elements of the
domain of w4 (x) are called primary memberships of x in A
and the memberships of the primary memberships in uz(x)
are called secondary memberships of x in A ie.,

fl={X,/1A(X)|X€X} ............................. 3)
A = {(x, ua(x)), pz(x, ua(x)|
XEX pp(x) € Ty CO,TTY cvvvvveeeennnnnnns (6)

in which ps(x) € J, C [0,1] and uz C [0, 1]. T2 fuzzy
variable A can also be expressed as

f(xeX) f(yA(x)GJXQIO,l p HaC6 a0/ (X, pa) - eeeee e @)

Another important concept with regard to T2 fuzzy set is
the footprint of uncertainty. Uncertainty in the primary mem-
berships of a type-2 fuzzy set, consists of a bounded region
that we call the footprint of uncertainty (FOU). It is the union
of all primary memberships, i.e.,

FOU(A) = ey Jyx wvrrvrrrrmrmmneeneenenn (8)

The term footprint of uncertainty is useful, because it not
only focuses our attention on the certainties inherent in a spe-
cific T2 fuzzy membership function, whose shape is a direct
consequence of the nature of these uncertainties, but it also
provides a convenient verbal description of the entire domain
of support for all the secondary grades of a T2 membership
function. It also enables us to depict a T2 fuzzy set graphi-
cally in two-dimensions instead of three dimensions, and by
doing so lets us overcome the first difficulty about T2 fuzzy
sets-their three-dimensional nature which makes them very
difficult to draw. The shaded FOUs imply that there is a dis-
tribution that sits on top of the new third dimension of T2
fuzzy sets. What that distribution looks like depends on the
specific choice made for the secondary grades. When they all
equal one, the resulting type-2 fuzzy sets are called interval
T2 fuzzy sets. Such sets are the most widely used T2 fuzzy
sets to date.

2.3 Type-2 Fuzzy Logic System The conventional
fuzzy rule-base structures employ type-1 fuzzy sets as input-
s, outputs and both/either in antecedent and/or consequen-
t parts of the rules. However, the uncertainty can be cap-
tured in a better way by using higher order fuzzy sets, such
as Type-2 fuzzy sets, which encapsulate more information
granules. Figure 1 shows the structure of a type-2 fuzzy log-
ic system(FLS). For a type-2 FLS, the inputs and outputs are

type- 2 fuzzy sets and the same is to both/either in antecedent
and/or consequent parts of the rules. It has been argued that
using type-2 fuzzy sets to represent the inputs and outputs of
FLCs has many advantages when compared to type-1 fuzzy
sets; We summarize some of these advantages as follows£

1¢As the type-2 fuzzy set membership functions are them-
selves fuzzy and contain a footprint of uncertainty, they can
model and handle the linguistic and numerical uncertainties
associated with the inputs and outputs of the FLC in chang-
ing and dynamic unstructured environments and hence they
can handle the difficulty associated with determining the ex-
act membership functions for the fuzzy sets. Therefore, FLCs
that are based on type-2 fuzzy sets will have the potential to
produce a better performance than type-1 FLCs when dealing
with uncertainties.

2¢Using type-2 fuzzy sets to represent the FLC inputs and
outputs will result in the reduction of the FLC rule base when
compared to using type-1 fuzzy sets as the uncertainty repre-
sented in the footprint of uncertainty in type-2 fuzzy sets lets
us cover the same range as type-1 fuzzy sets with a smaller
number of labels. The rule reduction will be greater as the
number of the FLC inputs increases.

3¢Each input and output will be represented by a large
number of type-1 fuzzy sets which are embedded in the type-
2 fuzzy sets. The use of such a large number of type-1 fuzzy
sets to describe the input and output variables allows for a
detailed description of the analytical control surface as the
addition of the extra levels of classification gives a much s-
moother control surface and response.

According to Karnik and Mendel, the type-2 FLC can be
thought of as a collection of many different embedded type-1
FLCS. It has been proved that the extra degrees of freedom
provided by the footprint of uncertainty enables a type-2 FLC
to produce outputs that cannot be achieved by type-1 FLCs
with the same number of membership functions. It has al-
so been shown that a type-2 fuzzy set may give rise to an
equivalent type-1 membership grade that is negative or larger
than unity. Thus a type-2 FLC is able to model more complex
input-output relationships than its type-1 counterpart and thus
can give a better control response. There are many evidences
in practical applications:

Christopher Lynch, Hani Hagras, Victor Callaghan[18] in-
troduce a real-time type-2 FLC for embedded controllers op-
erating in marine/traction diesel engines and conducted nu-
merous experiments where the embedded type-2 FLCs dealt
with the uncertainties in real -time and displayed a robust
control response that outperformed the PID and type-1 FLCs
whilst using smaller rule bases.

Jia Zeng, Zhi-Qiang Liu[23] presents an extension of hid-
den Markov models (HMMs) based on the type-2 (T2) fuzzy
set (FS) referred to as type-2 fuzzy HMMs (T2 FHMMs),
then apply them to phoneme classification and recognition on
the TIMIT speech database. Experimental results show that
T2 FHMMs can effectively handle noise and dialect uncer-
tainties in speech signals besides a better classification per-
formance than the classical HMMs.

Qilian Liang and Lingming Wang[39] present a new ap-
proach for sensed signal strength forecasting in wireless sen-
sors using interval type-2 fuzzy logic system (FLS) and com-
pare the interval type-2 FLS or sensed signal forecasting a-
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gainst a type-1 FLS. Simulation results show that the inter-
val type-2 FLS performs much better than the type-1 FLS in
sensed signal forecasting.

M.H. Fazel Zarandi a E. Neshata [40] developed a type-2
Fuzzy Rule Based Expert System to analyze the stock mar-
kets. The fuzzy rule based model is tested on the stock mar-
ket of an automotive manufactory in Asia and the prediction
result is much better then type-1 FLC.

3. Expected Value of T2 fuzzy set based on Cred-
itability Theory

After introducing creditability theory and the conception
of T2 fuzzy sets, we define the expected value of T2 fuzzy
set using creditability measure here. We see later that using
the expected value to model T2 fuzzy variables reduces huge
complexity in the process of calculation, transfer the vertical
uncertainty into horizontal one , thus enable us to deal with
T2 fuzzy variables.

Suppose that (I'y, P(I';), Pos;) is a possibility space. Let
I'; be the universe of discourse, and P(I'1) on I'; is a class
of subsets of I'; that is closed under arbitrary unions, inter-
sections, and complement in I';. Let R be the set of real
numbers. Then a map py : Iy — R is said to be a T1 fuzzy
membership function defined on I';. We also define another
possibility space for T2 fuzzy sets, which is (I';, P(I"2), Pos,).
A function Pos,; : P(I';) — [0, 1] and a T2 fuzzy membership
function is a mapping 3 : I', — I'y. The most normal T2
fuzzy sets are constructed in an interval style which is illus-
trated as follows:

Let A be a fuzzy set defined on possibility space
(I'1,Pd'1),Pos). Define that for every uys € I'y, uyy =
(ua + c, Ua + "I, which is a T2 interval fuzzy membership
function defined on some possibility space (I'2, P(I'2), Pos).

Moreover, a type-2 fuzzy variable is defined as a mapping
XU : I, —» R. The normal form of a T2 fuzzy variable is
in the form of interval and a more complicated one is in the
form of triangle defined as follows:

Let A be a fuzzy variable defined on possibility space
(T, P(I'1), Pos). For every x € R, it follows a triangular pri-
mary membership function as A(x) = (x+a, x+c!, x+¢") and
forevery u4 € I'y, it also follows a triangular secondary mem-
bership function A(uy) = (ua(x0), a(xo)+€', a(xo)+e"). For
every uy € I'r.

For any T2 fuzzy set A, the expected value of the T2 fuzzy
set A is denoted by E[uz] given p4, which has been proved to
be a measurable function of A i.e., it is a T1 fuzzy variable.
The mathmatical definition is as follows:

Let A, be a T2 fuzzy variable and u; be a T2
fuzzy membership function defined on a possibility space
(Q, P(Q), Pos), which describes the secondary membership
grades forA,. The expected value of T2 fuzzy variable A, is
defined as follows.

E[£] = fg[ I Crigw) = ridr

- ji, Crié(w) < r}dr}Pr(dw)
)

Assume that original outputs for the primary membership
function of A, is the following possibility distribution of

1a(xo), where xo € R In order to get the expected value of
T2 fuzzy variable, we may take the place of the original pri-
mary grades by using the result of equation above. Hence,
4 will be transformed into a new function defined as expect-
ed primary membership function denoted as pup 5. And its
creditability is denoted as Cryz; instead of Cry.

We give a simple example here to help understand the
definition. Assume that there is a triangular T2 fuzzy vari-
able Ay. Its primary membership function for real values is
A = (a,c, "I whose possibility distribution is

!

x—c ;
—5 ¢ <x<a
&% 10)
= C' — X  iedieiesieneeaan
Ha() , as<x<c" (
c'—a ]
0, otherwise.

Meanwhile, for any xy € R included in A = (a, e, enr
with its primary grades expressed as pa(xo) , the T2F mem-
bership function for ps(xp) is assumed to be A(ua(xp)) =
(ua(x0), ua(xo) + el,,uA(xo) + "), , whose possibility dis-
tribution is

_,l
%7 el < pa(x) < pa(xg)

LoD ) <@ < e (D
e’ — pa(xo)

0, otherwise.

Mz(pa(x)) =

where A € 'y, Ace I'>. Notice that u(xo) will be the center
of the T2 fuzzy membership grades. _

For boundaries of primary grades of Ag where values of
them are O, the secondary membership function is A(0) =
(0,0+¢!,0+ eI, and the expected value of them according
to equation (7) will be

e+e

R
For center of primary grades where its value is 1, the sec-
ondary membership function is A(b) = (1,1 + €, 1 + €")I'5,
and the expected value will be

E[A] =

d+2+e
4

. One thing that should be noticed is that even there will
be surplus more than 1 in the calculation process, it will not
affect the final result. Then we substitute expected prima-
ry grades for original ones and form an expected primary
membership function. The original one satisfies pj(a) = 1
, /JA(CI) = 0 and pu(c") = 0. After transformation, the ex-
pected one follows distribution as the following equation and

. ! r 1y Iy ,r
satisfies f14(a) = S22 | 1y (cl) = S and pa(ch) = S

E[A] =

!

x—c e +e ;
+ , C<xZa
2(a - c) l 4
~ = c—x e +e" .
,UE[A](X) + L a<x<c (12)
21(0’ —a) 4
e otherwise.

4 b
Noticed that after transformation into the expected primary

. . . Iy or .
function, the function biases a value at <% higher for the u-
niverse, which is not reasonable. Thus we need to make some
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adjustment through shaping the function into triangular one
again. Actually, after transform the T2F set into T1F set, the
new boundaries are loosing thus larger than original ones. It
is because the new reduced T1F set contains more informa-
tion than the original T1F set. We may calculate the new ex-
pected value of Ay is A’ = (¢! — (87”2(“_‘1) o+ (e'”’)z(cr_“) )y
instead of A = (¢!, ¢)I'; , whose possibility distribution fol-
lows:

)C—Cl

, [ _ (e’+e’;(a—c1) <x<a
2(a - ch)
~ = cC — X r r_
uE[A](x) — anSanSCr+M#
2" —a)
0, otherwise.

the creditability of the expected primary function will be
like:

O(x) = Cryz1(€ < x)

0, x<vy
_ (e"+e')(a—ch)
i 3 A Jd > y < X < a
B 4(a—c’+ (e +e;(a—c)) A
[ R G (i) ) 13
Z , a<x<(
4(c" — a + L0 \
L, l=>x

ro Ll _al LTI AN
where y=c/ — 3N and g=¢” + I We call A/

the expected value of Aanditisa range of T1 fuzzy set.

4. Formulation of a class of T2 fuzzy regression
model

T1 fuzzy set’s arithmetic operations have been studied by
making use of the extension principle [41][42][43][44][45].
These studies have involved the definition of possibility.
Tanaka and Watada figured out that fuzzy equations dis-
cussed by Sanchez can be regarded as a possibilistic struc-
ture in 1989. In the sequel, a possibilistic system has been
applied to the linear regression analysis, A possibility struc-
ture has much advantage to deal with inputs and outputs with
uncertainty. We will use the structure here as well. In our T2
fuzzy regression model, input data X;; and output data Y;, for
alli=1.---,Nand k= 1,---, M are assumed to be T2 fuzzy
variables, which are defined as

Vi = (Wis by, ), 15D Xy = (i o, (i), i (40))(14)

respectively.

yi and x;; are the crisp value; uy,(y;) and ux,(x;;) are pri-
mary membership grades for y; and x;;; uy (y;) and Uy, (xij)
are secondary membership grades for uy,(y;) and py, (xi)).
These three factors construct the basis for a T2 fuzzy vari-
able. Where i denotes sample i for i = 1,---,N ; j denotes
for the jth attributes for j =1,2,---, M.

As discussed before, we will use a possibilistic structure
here. Let us denote fuzzy linear regression model with T1
fuzzy coefficients Ay, - -, Ay. Then the T2 fuzzy regression
is in the form as follows:

Y= A Xj + AxXip 4+ Ay Xipgy v (15)
where Y; denotes an estimate of the T2 fuzzy output and
Lar
A; = (Af;A-f,A’].,A;) are symmetric triangular fuzzy co-
: T

efficients when triangular T2 fuzzy data
i=1,---,Nand j=1,---,M.

When outputs and inputs are defined as crisp value or T1
fuzzy variables, it is easy to determine the linear regres-
sion model’s parameters by satisfying the estimated model
includes all given outputs. We will mimic this process to for-
mulate the constraints for T2 fuzzy regression model.

X;; are given for

Y= A X; +A2)~(;2+"'+AMZM%E,
P = L, Ny (16)

where 2 is a T2 fuzzy inclusion relation whose precise

meaning will be explained later on.

5. Building an expected value T2 fuzzy regres-
sion model based on creditability theory

We have defined the structure of a class of T2 fuzzy regres-
sion model above. In our definition, the inputs and outputs
are all T2 fuzzy variables. And coefficients are T1 fuzzy sets.

In order to build an expected value T2 fuzzy regression
model, we may reform an expected ary membership function
for inputs X,(ij). Thus, the X,(ij) transfer to a range repre-
sented as [E[X,(i/)°] - E[X,(i)®], E[X,(i/)°] + E[X,(ij)"1].
And it is the same to the outputs. We assume the inputs and
outputs are all symmetric triangular T2 fuzzy variables whose
primary membership functions and secondary ones are al-
1 in triangular form with a center C and two equal distance
boundaries B. To simplify, we will use [efi,(i TR G j)] instead
of original the expression and [ey, ), 07 ;| instead of Y3 1.

Thus the T2 fuzzy regression model will reformulate as
follows

[T2 fuzzy expected value regression model]

M
: _ r _ Al
minJ4)= % (Aj Aj)
subject to
AL > Al
J J
M

Yi= Zl Aj-lex iy Txap] 2Lex,w0 Tr >
J= h
for i=1,...N,j=1,---, M.

As shown from the equation above, original T2 fuzzy in-
puts and outputs are replaced by their expected values, which
are T1 fuzzy sets. Thus, Calculations between three dimen-
sional T2 fuzzy sets are thus transferred to two-dimensional
range calculations between T1 fuzzy sets. On the one hand,
range calculations are much easier than three-dimensional
ones. On the other hand, information is transformed from
vertical style into range style without much distortion. How-
ever, we still have many constraints to meet. So we offer a
easy solution as follows.

6. A solution based on heuristic method

Given we are not able to decide whether the coeflicient is
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positive or negative at first. We may introduce a trial and
error method to approach the consequence. The basic idea
behind it is to eliminate the error of estimation on the po-
lar of coeflicient by checking the consistency of it. Once the
polar of each coefficient becomes consistent, then we will
take the outcome as the consequence. Besides, we may intro-
duce a attribute L to accommodate the accuracy of the con-
sequence Consider we have got the expected value of input
Lij = lex,ij = T%ap €% T TR

Oy 0 —Ov /-
We may define: If, = ez, + ) %D o5 the ap-
proximately estimation of the membership degree we will
take I[.C. as the first input to the model to roughly determine
whether the coefficient is positive or not. In the constraints,
we make all values included in the upper and lower boundary.

LP problem is described as follows:

M
: _ r _ Al
min J(A) = ng (Aj Aj)
subject to
r l
1) - Yi=A - IL+AIF +---

L
+Am - Ty 2leg i, oy,

_ U L

2) - Yi—Al'ILi1+A2'Ii2+"' .. (18)
+Au - Ly Dley i) 07,01,

(3) — Yi=Ar-I5+ Ay 15+
+Awm - Ly Oleg i 07,

(ZM)—> Y,':Al'I.U-i-Az'Ig+"'

+Ak - Ly 2ley i), 07,0
for i=1,...N,j=1,---,M

Through solving the LP problem, we will get the first
round’s A;.(l) and Ai.(]). At this time, L = 1, which means
the first round’s coefficients and shows in the way as A;(1).
After got the first round’s result, we can decide the form of
consequnce of multiple of two ranges:

Consider a jth-coefficient if A;(l) > Ai.(l) > 0, we will
assign A;(2) - [ex ;5> Tz, ]

AJ(Z? ez iy O an!

= 4,2 leg.ap — %)) A2 - exap + %))
A more general case is as follows:

(DA%(k) > Ai.(k) >0

Ai(k)l Lex, i) T1z, ]

= [45(0) - (ex i, = o5, AT0) - (e ) + Txp)]

(2)A%(k) < Aﬁ(k) <0:

A,-(k)l Leg.ip T ap!] .

= A4, (g * 05,0 AR (ex.0 ~ Tx0p)]

(BA;(k) < 0 < A%(K) =

A,-(k)l Leg.ip O

= [A;(K) - eg,ij) + T3,y AJK) - (ex, i) + Tx )]

By doing so we have formulate another LP problem ,which
is the second round. We have assumed A;(l) > Aé(l) >0, so
we can use the same form of LP problem above. After solv-
ing the LP problem above we may get the value of A;(Z) and

A;(Z). At this time, L = 2.
If it satisfies

A1) x Al2) 2 0
A1) x A%(2) 2 0

Then, it is possible for us to judge that the polar of coeffi-
cients has become consistent. Hence, we may take A;(Z) and
A’(2) as the final outcome in this case. If the condition is not
satisfied, the procedure of iteration will be continued till we
get both

AL =1)x A(L) 2 0
AL —1)x AY(L) 2 0

Besides, we will assign a LO (which is set as description of
the accuracy for the problem at very beginning. After the po-
lar has become consistent , we are allowed to repeat the pro-
cedure of iteration till the outcome meets our requirement of
accuracy.

7. Application on Arbitrage Pricing Theory

In the section, we expand a famous pricing theory in fi-
nance, which is the arbitrage pricing theory(APT). We use
T2F regression model based on creditability theory to rede-
fine the formula of APT and to show the benefit of the new
model in practice.

7.1 Mathmetical model of Arbitrage Pricing Theory
In finance, arbitrage pricing theory (APT) is a general the-
ory of asset pricing that holds that the expected return of a
financial asset can be modeled as a linear function of var-
ious macro-economic factors or theoretical market indices,
where sensitivity to changes in each factor is represented by
a factor-specific beta coefficient.

The form of arbitrage pricing theory is like:

E(rj)=rf+bji *RP\ +bpp «RPy + ....bj, * RP,

where E(r;) is the expected return of the jth asset; RPy is
the risk premium of the kth factor; ry is the risk-free rate.
That is, the expected return of an asset j is a linear function
of the asset’s sensitivities to the n factors. Note that there are
some assumptions and requirements that have to be fulfilled
for the latter to be correct: There must be perfect competition
in the market, and the total number of factors may never sur-
pass the total number of assets (in order to avoid the problem
of matrix singularity),

As with the CAPM(another famous pricing theory), the
factor-specific betas are found via a linear regression of his-
torical security returns on the factor in question. Unlike the
CAPM, the APT, however, does not itself reveal the identity
of its priced factors - the number and nature of these factors
is likely to change over time and between economies. As a
result, this issue is essentially empirical in nature.
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Fig.1. The Architecture of a Type-2 Fuzzy Logic
System

7.2 Modeling Background There are two main fi-
nancial markets in China: the over-the-counter(called OTC)
market and the exchange market. Price of assets in the OTC
market is in the form of quotations, which is discrete and sub-
jective based on offered or taken will from traders. Specifi-
cally speaking, for price index like the Shanghai interbank
offered rate(called Shibor) or valuation for credit bond(called
CBPV), quotation mechanism is usually as follows: the ma-
jority banks offered quotations according to their estimation
of the future trend of financial markets. The market regulator
collects all those quotations, then calculates a rough result as
the current price. The price is supposed to contain all ma-
jority banks’ opinions of the market and will be the basis for
valuations of all other financial assets. Moreover, regulators
will judge the quotation performance of each bank by some
standards(called evaluation system) and give the evaluation
to each quoter from time to time. The evaluation is supposed
to restrict behaviors of quoters and exert effects on their quo-
tations.

Considering that connections between different financial
instruments become more and more obvious, there emerges
study on linked movements of assets price recently, especial-
ly for bond market and money market. However, the quo-
tation price of them is hard to quantify and model given its
hybrid layers of uncertainties as mentioned above, which are
the quotations range and regulators evaluation. Here, we use
T2 fuzzy set to model them. More specifically, we use prima-
ry membership grade to describe how the quotation belong-
ing to the current price series and use secondary membership
grade to model those impact from regulators evaluations here.
According to the meaning of APT, we select the whole model
structure as a regression one.

7.3 Collecting of data We select both short ter-
m/high rank bonds yield to maturity(called YTM) and long
term/high rank YTM as inputs like 1 years AAA YTM and
10 years AAA YTM to reflect basic conduction mechanism
. Also we select low rank/short term bonds YTM as input
like 1 years AA YTM to reflect conduction of risk prefer-
ence. We choose 3 months Shibor as the representation of
money surface in market and it is the output. According to
the practical experience, 3MShibor is the best to express the
price performance for money market. As mentioned above,
price of Shibor and CBPV for one day is offered by majority
banks as shown in table 1. In our case, we collect 2014 whole
years CBPV from database of national association of finan-
cial market institutional investors(called Nafmii), which is
a self-regulatory organization aiming to promote sustainable

development of China OTC market and 2014 whole years
Shibor from database of China foreign exchange trade cen-
ter(called CFETS). Since CBPV is quoted twice a week and
Shibor is quoted 3 times a week, we collect data at frequen-
cy of twice a week. Therefore, we have 104 sets of data.
We choose 2014 to build our model because there is much
fluctuation in financial markets in China thus is not proper to
experiment the regular relationship between bond and money
market.

As we can see from table 2, Nafmii evaluates the perfor-
mance of each bank on credit debt spot rate quotation from
respects such as quotation promptness, quotation effective-
ness, deviation of transaction rate to quoted rate, etc. CFETS
evaluate the performance of each bank on Shibor quotation
from respects deviation of borrowing quotation, deviation of
lending quotation, measurement of quotation error,etc.

After considering respects mentioned above, the regulators
expertise group will grade each option then give a final as-
sessment for accuracy of quotation such as always, often,
sometimes, frequently, seldom to measure the performance
of each bank. The evaluation is got from inside of Nafmii
and CFETs and cannot used without authorization. We quan-
tify the fuzziness of the evaluation of accuracy of quotation as
always, 0.9,0ften,0.5,sometimes, 0.3,frequently, 0.7 and sel-
dom, 0.1. After that, the quotation can be shown in table 4.

7.3.1 Processing of Data  In order to quantify the
quotation price sufficiently, we both take the offered price and
evaluation from regulator into consideration. Given 2014-
3-17 s quotations in the table as an example, the range of
quotations of Shibor is from 5.25% to 5.59% and the final
price given by regulator is 5.50%. We assume the final price
given by regular has the primary membership as 1 and price
out of the quotation range has the membership grade as 0.
We use triangular membership to model the Shibor fuzzy set.
The same is to CBPV. Because there are many banks quote
besides 20 main banks and is not shown in the database of
CEFTS. We assume that the quotations is continuous for the
whole market.

[Custruction of T1 fuzzy set] Assumption 1: we
use triangular function as the structure of T1 fuzzy set

The range constructs the base of the set and the
final price given by regulator is the top of the tri-
angle.  According to the assumption: For 2014-3-17
s quotation, The Shibor is [5.25%,5.50%,5.59%]; The
ly AAA is [5.23%,5.73%,5.86%]; The 10y AAA is
[5.88%,6.23%,6.48%], which is shown in figure 2.

Moreover, we take evaluation of the performance of each
bank from regulator into consideration, which affects the sec-
ondary membership grade. In order to keep consistence, we
assume T2 membership function is in the form of triangle as
well. The evaluation factor affects the boundary and base of
the secondary membership function.

[Custruction of T2 fuzzy set] Assumption2: We use sl to
represent the primary grade. The T2 membership function is
represented as F. The T2 fuzziness is s2. We assume F,(s1)
is always the center of the T2 fuzzy triangle and equals 1.
The left boundary is defined as max{sl — s2,0}. The right
boundary is defined as min{s1 + s2, 1}.

Take 2014-3-17s shibor quotation as an example, the pri-
mary membership grade of the quotation 5.45% is 0.8. We
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Table 1. 2015-3-28’s quotation

Rank Shibor 3M | 1-year AAA | 1-year AA | 10-year AAA

quoted price | quoted price | quoted price | quoted price
1 Bank 1 5.50% 5.86% 6.48% 6.25%
Bank 2 5.50% 5.76% 6.47% 6.25%
| Bank 3 5.49% 5.74% 6.47% 6.25%
| Bank 4 5.50% 5.74% 6.47% 6.25%
l Bank 5 5.50% 5.74% 6.46% 6.25%
| Bank 6 5.50% 5.74% 6.46% 6.24%
| Bank 7 5.50% 5.74% 6.46% 6.24%
! Bank 8 5.25% 5.74% 6.46% 6.23%
: | ; Bank 9 5.50% 5.73% 6.46% 6.23%
TR 5o G4 Bank 10 | 5.50% 5.73% 6.46% 6.23%
- T R Bank 11 | 5.51% 5.73% 6.46% 6.23%
Bank 12 5.50% 5.73% 6.46% 6.23%
Bank 13 5.50% 5.73% 6.45% 6.23%
Fig.2. The T1 fuzzy set of the quotations of money and Bank 14| 5.59% 5.73% 6.45% 623%
bond market for 2014-3-17 Bank 15 5.52% 5.73% 6.45% 6.22%
Bank 16 5.45% 5.71% 6.43% 6.22%
Bank 17 5.49% 5.71% 6.42% 6.21%
Bank 18 2.49% 5.70% 6.40% 6.21%
Bank 19 2.49% 5.64% 6.35% 6.21%
e 7 . - Bank20 | 251% 5.23% 5.88% 472%

i ! :
i‘ } Table 2. Evaluation system of quotation
I
. \ Evaluation of Bond Spot Rate Quotation Evaluation of Shibor Quotation

=

Evaluation Evaluation
1
Fator
Bank 1 seldom 01
Bank 2 frequently 0.7

Fig.3. The T2 fuzzy set of the quotations of money and
bond market for 2014-3-17

R Cse 0Pt

Quotation promptness(B1)

Quotation effectiveness(B2)

Deviation of transaction rate to Quoted rate(B3) | Measurement of Quotation Error(M3)

Measurement of Quotation Error(B4) Stability of bilateral spread(M4)

Investors assessment(B5) Trading volume on Quoted rate(MS5)

Market Supervisors assessment(B6) Quotation promptness(M6)

Issuers assessment(B7) Quotation effectiveness(M7)

Table 3. Comparisons of performance between T2
fuzzy expected regression model, T1 fuzzy regression
model and Regression model

Deviation of Borrowing Rate Quotation(M1)
Deviation of Lending Rate Quotation(M2)

4

n

Fig.4. The residual analysis traditional regression mod-
el and T2 fuzzy expected regression model

assume 0.8 is also the center of secondary membership grade.
The 5.45% is quoted from a certain bank and its valuation of
regulator is seldom, which means it gives bad quotations as
usual. From the sense, we take evaluation factor 0.1 to con-
struct its secondary boundaries and base, which is [0.7 ,0.8,
0.9]. Another example, the quotation 5.3% has the primary
membership grade as 0.6. But its evaluation is frequently of
which the factor is 0.7. Still 0 and 1 is the natural limitations.
Thus its secondary membership is in the form of [0, 0.6, 1],
which is shown in figure 3.

7.4 Formulation of the regression model The ex-
pected value of T2 fuzzy variable A, is defined as follows.

Elgl= |, [ I~ crtéw) = nar

- [° crig) < r}dr}Pr(dw)
(23)

Coefficients Prediction accuracy
T2-FER [-2.25,-1.20];[1.75, 2.75];[0.0410,0.0705] 92%
T1-FR [-2.45,-1.00];[1.50, 3.001;[0.030,0.0825] 89%
Regression -1.68;2.25;0.06 54.5%

As defined in the former passage, we calculate the T2 ex-
pected value range from the original T2 fuzzy data range as
shown in table 5. Actually, after transform the T2F set into
T1F set, the new boundaries are loosing thus larger than o-
riginal ones. It is because the new reduced T1F set contains
more information than the original T1F set. We may calcu-

_~ ro ol _al
late the new expected value of Apis A’ = (¢t - %, "+

M#)Fl. Then, we expanded the traditional APT into
the T2F APT as follows:

E(rj) = ry + A{RPy + AgRP; + -+ + AyRPy - -+ (24)

where coefficients A in the formula are T1F sets. The ex-
pected return of the jth asset E(r;) is in the form of T2 fuzzy
sets. The risk premium of the kth factor RP; is T2 fuzzy
sets as well. Then we use T2 fuzzy expected value regres-
sion model(called T2-FER) based on the structure of APTto
structure the data.

The result is shown as follows:

ShiborsM = [-2.25,-1.20]AAAy + [1.75,2.75]AAy +
[0.0410,0.0705]AAA 1oy
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Table 4. 2015-6-1’s quotation

Rank Shibor 3M | 1-year AAA | l-year AA | 10-year AAA | Evaluation ‘
quoted price | quoted price | quoted price | quoted price
Bank 1 5.50% 5.86% 6.48% 6.25% Always
Bank 2 5.50% 5.76% 6.47% 6.25% Sometimes
Bank 3 5.49% 5.74% 6.47% 6.25% Seldom
Bank 4 5.50% 5.74% 6.47% 6.25% Often
Bank 5 5.50% 5.74% 6.46% 6.25% Always
Bank 6 5.50% 5.74% 6.46% 6.24% Frequently
Bank 7 5.50% 5.74% 6.46% 6.24% Often
Bank 8 5.25% 5.74% 6.46% 6.23% Often
Bank 9 5.50% 5.73% 6.46% 6.23% Often
Bank 10 5.50% 5.73% 6.46% 6.23% Sometimes
Bank 11 5.51% 5.73% 6.46% 6.23% Frequently
Bank 12 5.50% 5.73% 6.46% 6.23% Frequently
Bank 13 5.50% 5.73% 6.45% 6.23% Always
Bank 14 5.59% 5.73% 6.45% 6.23% Always
Bank 15 5.52% 5.73% 6.45% 6.22% Alway
Bank 16 5.45% 5.71% 6.43% 6.22% Often
Bank 17 5.49% 5.71% 6.42% 6.21% Often
Bank 18 2.49% 5.70% 6.40% 6.21% Often
Bank 19 2.49% 5.64% 6.35% 6.21% Often
Bank 20 2.51% 5.23% 5.88% 4.72% Frequently

Table 5. Input-output data with confidence interval

Sample Output Inputs
i I[ELER) I[E)L(I R EQI ] I[E)L(K, E§K]
L LR L R . L R
1 I[EZI,EP] I[E{n’Egu] I[E)L‘m’E;m]
2 I[E”z’ Y2] I[EX21 ’ Ele] . I[Exzk’ EXZK]

i L pR L pR L R
! I[Ei’EYi] I[EXH’EXH] I[EX,‘K’EXiK]

L R L R L R
N | IEj EY )| EY ER HEy o Exy ]

After we build the T2-FER to the training data, we find out
that the money surface is positively relative to the 10 years
AAA credit bonds rate and much positively related to the 1
years AA credit bonds rate. However, the 1 years AAA bonds
rate is negatively relative to Shibor. We try to explain it as fol-
lows: when money surface is loosen, investors will improve
their risk appetite and put much money in high return asset
such as low rank debt; 1 years AAA has much liquidity and
it is to some extent the substitute of the lending of money,
thus its price compete with Shibor 3M. According to macro
economy theory, long term bonds rate indicates the situation
of economy. Rise of it means economy is seeing a recover,
which stimulates the price of all assets. Thus it has a weak
positive linkage with money price.

7.5 Comparisons with traditional models Before
comparisons with other method, we make some assumptions
as follows: First, we assume the prediction of accuracy could
be measured by overlap between the models output and the
original value. For crisp value, if the output not equals the
original data , we measure it as not correct. For fuzzy da-
ta, if the overlap between is not above 80%, then we say it
is not accurate. We use matlab platform to implement T2-
FER,T1-FR and crisp regression model. Considering that fi-
nancial market has quarter effect, we use 2014 whole years
data to train the model. And we use the data of first quarter
of 2015 to test the model. To show the benefit of the new
model, we also do the residual analysis. We use creditability
theory to calculate the expected value of the residual of the

T2-FER and is shown in the right part of figure 4. As we can
see, the residual is much smooth than the traditional regres-
sion model. The prediction accuracy is shown in table 3. As
we can see, T2-FER has a bit higher accuracy than T1-FR
while the range of coefficients is much precise as shown in
table 4. Also they both outperform than traditional method.
Moreover, we use heuristic method to calculate the problem
instead of traditional vertices method. In vertices method,
there are 2K inequalities for each sample i. Therefore, we
will have K + 2 = N = 2K inequalities in total. Unfortunately
this problem cannot be solved within a reasonable comput-
ing time when K becomes even moderately large. For ex-
ample, when we have 10,000 features and 100,000 samples,
the linear programming problem will come with 2 = 2'0, 000
constraints and 10,000 non-negative constraints. Heuristic
method use irritation to try error s. The average irritation is
less than 10 times for 100,000 samples thus can save most of
calculations. There is evidence shown that heuristic method
is much efficient.

8. Concluding Remarks

In this paper, we build a T2 fuzzy regression model based
on creditability theory. The innovation of this paper stands
on several stakes as follows: 1) we defined the expected val-
ue for T2 fuzzy variable based on creditability theory. 2) we
formulated a T2 fuzzy regression model capable of dealing
with T2 fuzzy inputs and outputs 3) Moreover, we offered
an efficient heuristic solution. 4) We have expanded the tra-
ditional arbitrage pricing theory and build a new T2F APT.
This paper generalized our previous work[22][23]. Our fur-
ther work will try to define a new structure of T2F regression
model with T2F coefficients and compare the effect of differ-
ent defuzzification methods under the new structure.
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